서브메뉴

본문

파이썬 머신러닝 판다스 데이터 분석
파이썬 머신러닝 판다스 데이터 분석
저자 : 오승환
출판사 : 정보문화사
출판년 : 2019
ISBN : 9788956748337

책소개


데이터 과학자가 되기 위한 첫걸음!

파이썬 초급자나 중급자가 데이터 분석과 머신러닝을 배우고자 마음먹었다면 이 책을 선택해야 한다. 필수 라이브러리를 소개하고 설치부터 예제 코드를 따라 하면서 자연스럽게 익숙해지도록 안내하고 있기 때문이다. 어려울 것 같은 수학과 통계학적 이론은 가능한 한 낮추고 실습하며 최소한의 설명으로 결과값과 확인할 수 있도록 하였다. 또한 방대한 텍스트보다는 다이어그램 등과 같은 도식화에 신경을 기울여 한눈에 이해할 수 있도록 구성하였다. 누구나 데이터 과학자가 될 수 있다. 그 출발 선상에 섰다면 이 책과 함께 예제코드를 하나씩 실행해보면, 파이썬 데이터 분석을 즐기고 있는 본인을 발견할 것이다.

목차


PART 1. 판다스 입문
1. 데이터과학자가 판다스를 배우는 이유
2. 판다스 자료구조
2-1. 시리즈
2-2. 데이터프레임
3. 인덱스 활용
4. 산술연산
4-1. 시리즈 연산
4-2. 데이터프레임 연산

PART 2. 데이터 입출력
1. 외부 파일 읽어오기
1-1. CSV 파일
1-2. Excel 파일
1-3. JSON 파일
2. 웹(web)에서 가져오기
2-1. HTML 웹 페이지에서 표 속성 가져오기
2-2. 웹 스크래핑
3. API 활용하여 데이터 수집하기
4. 데이터 저장하기
4-1. CSV 파일로 저장
4-2. JSON 파일로 저장
4-3. Excel 파일로 저장
4-4. 여러 개의 데이터프레임을 하나의 Excel 파일로 저장

PART 3. 데이터 살펴보기
1. 데이터프레임의 구조
1-1. 데이터 내용 미리보기
1-2. 데이터 요약 정보 확인하기
1-3. 데이터 개수 확인
2. 통계 함수 적용
2-1. 평균값
2-2. 중간값
2-3. 최대값
2-4. 최소값
2-5. 표준편차
2-6. 상관계수
3. 판다스 내장 그래프 도구 활용

PART 4. 시각화 도구
1. Matplotlib - 기본 그래프 도구
1-1. 선 그래프
1-2. 면적 그래프
1-3. 막대 그래프
1-4. 히스토그램
1-5. 산점도
1-6. 파이 차트
1-7. 박스 플롯
2. Seaborn 라이브러리 - 고급 그래프 도구
3. Folium 라이브러리 - 지도 활용

PART 5. 데이터 사전 처리
1. 누락 데이터 처리
2. 중복 데이터 처리
3. 데이터 표준화
3-1. 단위 환산
3-2. 자료형 변환
4. 범주형(카테고리) 데이터 처리
4-1. 구간 분할
4-2. 더미 변수
5. 정규화
6. 시계열 데이터
6-1. 다른 자료형을 시계열 객체로 변환
6-2. 시계열 데이터 만들기
6-3. 시계열 데이터 활용

PART 6. 데이터프레임의 다양한 응용
1. 함수 매핑
1-1. 개별 원소에 함수 매핑
1-2. 시리즈 객체에 함수 매핑
1-3. 데이터프레임 객체에 함수 매핑
2. 열 재구성
2-1. 열 순서 변경
2-2. 열 분리
3. 필터링
3-1. 불린 인덱싱
3-2. isin( ) 메소드 활용
4. 데이터프레임 합치기
4-1. 데이터프레임 연결
4-2. 데이터프레임 병합
4-3. 데이터프레임 결합
5. 그룹 연산
5-1. 그룹 객체 만들기(분할 단계)
5-2. 그룹 연산 메소드(적용-결합 단계)
6. 멀티 인덱스
7. 피벗

PART 7. 머신러닝 데이터 분석
1. 머신러닝 개요
1-1. 머신러닝이란?
1-2. 지도 학습 vs 비지도 학습
1-3. 머신러닝 프로세스
2. 회귀분석
2-1. 단순회귀분석
2-2. 다항회귀분석
2-3, 다중회귀분석
3. 분류
3-1. KNN
3-2. SVM
3-3. Decision Tree
4. 군집
4-1. k-Means
4-2. DBSCAN

QuickMenu