서브메뉴
검색
본문
Powered by NAVER OpenAPI
-
인공지능 (튜링 테스트에서 딥러닝까지)
저자 : 이건명
출판사 : 생능출판사
출판년 : 2018
ISBN : 9788970509594
책소개
인공지능의 전통 기술에서 딥러닝까지
최근 인공지능은 일상어가 되어버렸다. 인공지능이 4차 산업혁명 시대의 핵심 기술이라고도 한다. 인공지능이 미래를 크게 바꿀 것이라고 한다. 인공지능 때문에 일자리가 사라지고 생존이 위협받을 수도 있다고 한다. 요즘은 비전공자가 말하는 인공지능 이야기를 더 자주 접하게 된다. 어떤 때는 공감하기 어렵고, 때로는 잘못된 이야기도 듣는다
이 책은 인공지능의 전통적인 기술에서 최근의 딥러닝까지 인공지능의 전문적인 내용을 소개한다. 학부생부터 심화된 학습을 하는 대학원생이나 연구자들도 참고할 수 있도록 전문적인 수준까지 다루고 있다.
목차
이론편
CHAPTER 1 인공지능
1.1 인공지능이란
1.2 인공지능의 역사
1.2.1 1960년대 이전
1.2.2 1970년대에서 1980년대 초반
1.2.3 1980년대 중반에서 1990년대
1.2.4 2000년대 이후
1.3 인공지능의 연구 분야
1.3.1 요소 기술 분야
1.3.2 주요 응용 분야
1.4 인공지능의 최근동향
1.5 인공지능의 영향
1.6 연습 문제
CHAPTER 2 탐색과 최적화
2.1 상태 공간과 탐색
2.1.1 탐색 문제
2.1.2 상태 공간과 문제 해법
2.2 맹목적 탐색
2.2.1 깊이 우선 탐색
2.2.2 너비 우선 탐색
2.2.3 반복적 깊이심화 탐색
2.2.4 양방향 탐색
2.3 정보이용 탐색
2.3.1 휴리스틱
2.3.2 언덕 오르기 방법
2.3.3 최상 우선 탐색
2.3.4 빔 탐색
2.3.5 A* 알고리즘
2.4 게임 탐색
2.4.1 mini-max 게임 트리
2.4.2 가지치기
2.4.3 몬테카를로 트리 탐색
2.5 제약조건 만족 문제
2.5.1 백트랙킹 탐색 방법
2.5.2 제약조건 전파 방법
2.6 최적화
2.6.1 조합 최적화
2.6.2 유전 알고리즘
2.6.3 함수 최적화
2.6.4 제약조건 최적화 문제
2.6.5 최소제곱평균법
2.6.6 경사 하강법
2.7 연습 문제
CHAPTER 3 지식 표현과 추론
3.1 지식
3.2 규칙
3.3 프레임
3.4 논리
3.4.1 명제 논리
3.4.2 술어 논리
3.5 의미망
3.5.1 의미망의 표현
3.5.2 의미망의 추론
3.6 스크립트
3.7 온톨로지
3.7.1 온톨로지의 정의
3.7.2 온톨로지의 지식 표현
3.7.3 시맨틱 웹
3.8 함수에 의한 지식 표현
3.9 불확실한 지식 표현
3.9.1 확신도를 이용한 규칙의 불확실성 표현
3.9.2 확률을 이용한 규칙의 불확실성 표현
3.9.3 퍼지 이론
3.9.4 확률 그래프 모델
3.10 규칙 기반 시스템
3.10.1 추론
3.10.2 규칙 기반 시스템 구조
3.10.3 규칙 기반 시스템 개발 도구
3.11 심볼 그라운딩 문제와 프레임 문제
3.12 CYC 프로젝트
3.13 연습문제
CHAPTER 4 기계학습
4.1 기계학습
4.2 기계학습의 종류
4.3 기계학습 대상 문제
4.3.1 분류
4.3.2 회귀
4.3.3 군집화
4.3.4 밀도 추정
4.3.5 차원축소
4.3.6 이상치 탐지
4.3.7 반지도 학습
4.4 결정 트리
4.4.1 결정 트리의 형태
4.4.2 결정 트리 학습 알고리즘
4.4.3 결정 트리를 이용한 회귀
4.5 앙상블 분류기
4.5.1 배깅 알고리즘
4.5.2 부스팅 알고리즘
4.6 k-근접이웃 알고리즘
4.7 군집화 알고리즘
4.8 단순 베이즈 분류기
4.9 신경망
4.9.1 퍼셉트론
4.9.2 다층 퍼셉트론
4.9.3 RBF 망
4.10 서포트 벡터 머신 SVM
4.10.1 초평면 기하학
4.10.2 SVM의 학습
4.10.3 선형분리가 되지 않는 데이터에 대한 SVM
4.10.4 비선형 SVM과 커널 기법
4.11 강화 학습
4.11.1 기대보상
4.11.2 가치함수
4.11.3 벨만 방정식
4.11.4 동적계획법 기반 정책 결정
4.11.5 강화 학습의 예측과 제어
4.11.6 연속영역의 가치함수 근사와 정책 근사
4.11.7 DQN 알고리즘
4.11.8 Actor-Critic 방법
4.11.9 A3C 알고리즘
4.11.10 역강화 학습
4.12 전이 학습
4.13 연습문제
CHAPTER 5 딥러닝
5.1 딥러닝
5.1.1 기울기 소멸 문제
5.1.2 가중치 초기값
5.1.3 과적합 문제
5.2 컨볼루션 신경망
5.2.1 컨볼루션
5.2.2 풀링
5.2.3 컨볼루션 신경망의 구조
5.2.4 컨볼루션 신경망의 학습
5.2.5 대표적인 컨볼루션 신경망 모델
5.2.6 딥러닝 신경망의 전이 학습
5.3 딥러닝 생성 모델
5.3.1 제한적 볼츠만 머신 RBM
5.3.2 심층 신뢰망 DBN
5.3.3 대립쌍 생성망 GAN
5.4 재귀 신경망
5.4.1 재귀 신경망
5.4.2 ReLU 활성화 함수를 사용하는 재귀 신경망
5.4.3 LSTM 재귀 신경망
5.4.4 GRU 재귀 신경망
5.4.5 재귀 신경망의 확장
5.5 오토인코더
5.5.1 특징 추출 오토인코더
5.5.2 잡음제거 오토인코더
5.5.3 희소 오토인코더
5.5.4 변분 오토인코더
5.6 인코더-디코더 망
5.6.1 단순 인코더-디코더 망
5.6.2 주목 모델을 포함한 인코더-디코더 망
5.6.3 주목 메커니즘
5.7 메모리 확장 신경망 모델
5.7.1 뉴럴 튜링머신 NTM
5.7.2 미분가능 신경망 컴퓨터 DNC
5.7.3 메모리망 MemoryNet
5.7.4 종단간 메모리망 MemN2N
5.7.5 동적 메모리망 DMN
5.8 딥러닝 개발 환경
5.9 연습문제
CHAPTER 6 계획수립
6.1 계획수립
6.2 계획수립 문제
6.2.1 고전적 계획수립 문제
6.2.2 마르코프 결정과정 문제
6.2.3 부분관측 마르코프 결정과정 문제
6.2.4 다중 에이전트 계획수립 문제
6.3 계획수립기
6.4 계획수립 문제 기술 언어
6.4.1 STRIPS
6.4.2 PDDL
6.5 고전적 계획수립 방법
6.6 상태공간 계획수립
6.6.1 전향 탐색과 후향 탐색
6.6.2 STRIPS 계획수립 알고리즘
6.6.3 GraphPlan 알고리즘
6.7 계획공간 계획수립
6.8 계층적 계획수립
6.9 연습문제
응용편
CHAPTER 7 데이터 마이닝
7.1 데이터 마이닝
7.2 데이터 마이닝의 과정
7.3 데이터 마이닝 대상
7.4 연관 규칙 마이닝
7.4.1 연관규칙 마이닝 알고리즘
7.4.2 연관 규칙 마이닝의 응용 분야
7.5 텍스트 마이닝
7.5.1 텍스트 마이닝의 대상
7.5.2 감성분석
7.5.3 토픽 모델링
7.6 그래프 마이닝
7.6.1 빈발 부분그래프
7.6.2 그래프 검색
7.6.3 그래프 분류
7.6.4 그래프 군집화
7.6.5 그래프의 키워드 검색
7.6.6 그래프 데이터의 특징
7.7 추천
7.7.1 등수매기기 알고리즘
7.7.2 추천 알고리즘
7.8 시각화
7.9 연습문제
CHAPTER 8 자연어 처리
8.1 자연어의 특성
8.2 한국어 문법
8.2.1 형태론
8.2.2 통사론
8.2.3 음운론
8.3 형식 문법
8.3.1 정규 문법
8.3.2 문맥 자유 문법
8.3.3 문맥 의존 문법
8.3.4 무제약 문법
8.4 자연어 처리의 분석 단계
8.5 형태소 분석과 품사 태깅
8.5.1 형태소 분석
8.5.2 품사 태깅
8.5.3 개체명 인식
8.6 구문 분석
8.6.1 규칙기반 구문분석
8.6.2 기계학습 기반 구문분석
8.7 의미 분석
8.8 단어의 실수 벡터 표현
8.8.1 단어의 벡터표현
8.8.2 CBOW 모델
8.8.3 Skip-gram 모델
8.8.4 계층적 소프트맥스와 반례 표본 추출
8.8.5 단어 벡터 표현의 활용
8.9 딥러닝 기반의 자연어처리
8.9.1 언어 모델
8.9.2 구와 문장 표현
8.9.3 기계 번역
8.10 음성인식
8.11 연습 문제
CHAPTER 9 컴퓨터 비전
9.1 컴퓨터 비전의 문제
9.1.1 컴퓨터 비전의 관련 분야
9.1.2 컴퓨터 비전의 처리 단계
9.2 영상 표현
9.3 영상처리
9.3.1 이진화
9.3.2 히스토그램 평활화
9.3.3 장면 디졸브
9.3.4 컨볼루션 연산과 필터
9.3.5 에지 검출 Canny 연산자
9.3.6 LOG 필터
9.3.7 DOG 연산
9.3.8 영상 분할
9.4 특징 추출
9.4.1 특징점
9.4.2 영상 피라미드와 스케일 공간
9.4.3 블롭 검출
9.4.4 SIFT 특징점 검출
9.4.5 특징 기술자
9.4.6 HOG 기술자
9.4.7 허프 변환
9.4.8 매칭
9.5 컴퓨터 비전의 대상
9.6 객체 위치 검출 및 개체 인식
9.6.1 R-CNN 모델
9.6.2 YOLO 모델
9.6.3 SSD 모델
9.7 의미적 영역 분할
9.8 딥러닝 응용
9.8.1 영상 주석달기
9.8.2 예술작품 화풍 그림 생성
9.9 연습문제
CHAPTER 10 지능 로봇
10.1 로봇
10.1.1 로봇의 용도와 분류
10.1.2 로봇 기술 분야
10.1.3 로봇 응용 분야
10.2 로봇 시스템 구성
10.2.1 물리적 구성요소
10.2.2 소프트웨어적 구성요소
10.3 기구학과 동역학
10.3.1 기구학
10.3.2 동역학
10.4 센서와 구동기
10.4.1 내부 센서
10.4.2 외부 센서
10.4.3 구동기
10.4.4 제어
10.5 구성요소 간의 통신 방식
10.5.1 하드웨어 요소 간의 통신
10.5.2 소프트웨어 요소 간의 통신
10.6 로봇 제어 패러다임과 구조
10.6.1 계층적 패러다임
10.6.2 반응형 패러다임
10.6.3 혼합형 패러다임
10.6.4 로봇 제어 코드 구현
10.7 로봇 소프트웨어 개발 프레임워크
10.8 로봇 계획 수립
10.9 위치 결정과 지도 작성
10.9.1 동시적 위치 결정과 지도 작성
10.9.2 칼만 필터
10.9.3 파티클 필터
10.9.4 SLAM 알고리즘과 라이브러리
10.10 항법
10.11 연습문제
도구편
CHAPTER 11 규칙 기반 시스템 개발 도구 Jess
11.1 Jess
11.2 Jess 설치
11.3 Eclipse 설치 및 Jess 연동
11.3.1 Eclipse 설치
11.3.2 Eclipse와 Jess 연동
목차
11.4 Jess 프로그래밍
11.4.1 원소, 수, 문자열
11.4.2 리스트
11.4.3 변수
11.4.4 제어구조
11.4.5 함수
11.4.6 작업메모리 관리
11.4.7 규칙
11.4.8 추론
11.5 Jess 활용 예제
11.5.1 clp 파일
11.5.2 Java에서 Jess 사용
11.6 실습문제
CHAPTER 12 기계 학습과 데이터 마이닝 도구 Weka
12.1 Weka
12.1.1 Weka 설치
12.1.2 Weka의 데이터 형식 ARFF
12.1.3 Weka의 구성
12.2 Explorer를 이용한 데이터 분석
12.3 결정트리 기반 분류
12.3.1 Weka의 결정트리 생성
12.3.2 Java에서 Weka 결정트리 사용
12.4 연관 규칙 마이닝
12.4.1 Weka의 연관 규칙 마이닝
12.4.2 Java에서 Weka 연관 규칙 마이닝 사용
12.5 실습문제
CHAPTER 13 딥러닝 프레임워크 텐서플로우
13.1 텐서플로우 설치
13.2 텐서플로우 소개
13.2.1 데이터 플로우 그래프
13.2.2 변수와 플레이스홀더
13.2.3 텐서보드
13.2.4 텐서
13.2.5 텐서 변환 연산
13.2.6 텐서 산술 연산
13.2.7 텐서 축약 연산
13.2.8 텐서 행렬 연산
13.3 텐서플로우를 이용한 기계학습
13.3.1 선형회귀
13.3.2 k-means 군집화
13.3.3 간단한 신경망 모델
13.3.4 다층 퍼셉트론
13.3.5 컨볼루션 신경망
13.3.6 재귀 신경망
13.3.7 오토인코더
13.3.8 대립쌍 생성망
13.4 실습 문제
CHAPTER 14 텍스트 처리 파이썬 패키지
14.1 파이썬 텍스트 처리 패키지
14.2 영문 텍스트의 토큰화와 품사 태깅
14.3 한글 텍스트 파일의 형태소 분석과 품사 태깅
14.4 텍스트 마이닝
14.5 단어의 실수 벡터 표현
14.6 Google 실수 벡터 사용
14.7 실습 문제
CHAPTER 15 컴퓨터 비전 라이브러리 OpenCV
15.1 OpenCV 소개
15.2 OpenCV 설치
15.3 영상 처리 프로그래밍
15.3.1 영상 파일 읽기와 화면 표시
15.3.2 영상의 이진화
15.3.3 히스토그램 평활화
15.3.4 장면 디졸브
15.3.5 컨볼루션 연산
15.4 컴퓨터 비전 프로그래밍
15.4.1 영상 내의 질의 영상 식별
15.4.2 영상 속의 얼굴 검출
15.4.3 보행자 검출
15.4.4 도로 차선 검출
15.5 실습문제
CHAPTER 16 로봇 소프트웨어 개발 프레임워크 ROS
16.1 ROS
16.2 ROS 미들웨어
16.2.1 노드
16.2.2 미들웨어 프로그램
16.2.3 개발도구
16.3 ROS 패키지
16.4 ROS 설치
16.4.1 터틀봇과 원격 PC의 환경 구축
16.4.2 Cob People Detection 패키지
16.4.3 Gmapping 패키지
16.4.4 음성합성 패키지
16.5 ROS 프로그래밍
16.5.1 토픽을 이용한 통신
16.5.2 서비스를 이용한 통신
16.6 실습문제
부록 A. 확률 이론
A.1 불확실성과 확률
A.1.1 확률의 정의
A.1.2 결합 확률과 조건부 확률
A.2 베이즈 정리
A.2.1 베이즈 정리
A.2.2 베이즈 정리의 의미
A.3 확률변수와 확률분포
A.4 확률벡터
A.5 가우시안 분포
A.5.1 가우시안 분포함수
A.5.2 다변수 가우시안 분포
A.6 마르코프 모델
A.6.1 마르코프 체인
A.6.2 은닉 마르코프 모델 HMM
A.6.3 마르코프 결정과정 MDP
A.6.4 부분관측 마르코프 결정과정 POMDP
A.7 EM 알고리즘
부록 B. 선형대수학
B.1 행렬
B.1.1 행렬의 형태
B.1.2 직교
B.1.3 기저와 좌표계
B.1.4 행렬식
B.1.5 이차방정식과 행렬 표현
B.1.6 고유값과 고유벡터
B.1.7 노름(norm)
B.1.8 복소수 벡터와 복소수 행렬
B.1.9 푸리에 변환과 FFT
B.2 행렬 분해와 응용
B.2.1 고유값 분해
B.2.2 특이값 분해 SVD
B.2.3 주성분 분석 PCA
B.3 함수 미분과 벡터 미분
B.3.1 그레디언트
B.3.2 자코비안
B.3.3 헤시안
B.3.4 라플라시안
B.3.5 벡터와 행렬의 미분
참고문헌
찾아보기