서브메뉴
검색
본문
Powered by NAVER OpenAPI
-
처음 배우는 딥러닝 수학 (그림으로 이해하고 엑셀로 확인하는 딥러닝 수학 기본)
저자 : 와쿠이 요시유키|와쿠이 사다미
출판사 : 한빛미디어
출판년 : 2018
ISBN : 9791162240441
책소개
고등학교 수학으로 살펴보는 딥러닝 개념
딥러닝 모델의 바탕은 수학입니다. 따라서 수학 전공자 수준만큼은 아니더라도 딥러닝에서 사용하는 수학 이론의 큰 그림을 이해해야 실제 딥러닝 모델을 제대로 설계해서 개발할 수 있습니다.
이 책은 신경망을 구현하는 데 사용하는 수학 이론을 그림 중심으로 설명합니다. 또한 엑셀을 이용해 수학 이론의 구현 결과를 살펴볼 수 있습니다. 딥러닝 관련 라이브러리를 사용해본 경험은 있지만, 수학에 바탕을 둔 딥러닝 모델 구현을 어려워한다면 이 책을 읽고 원하는 딥러닝 모델을 구현하는 토대를 쌓기 바랍니다.
목차
Chapter 1 신경망의 동작 방식
__01 신경망과 딥러닝
__02 뉴런 활동의 수학적 표현
__03 뉴런의 활동을 일반화하는 활성화 함수
__04 신경망
__05 악마가 설명하는 신경망 구조
__06 악마의 활동과 신경망의 연관 관계
__07 스스로 학습하는 신경망
Chapter 2 신경망을 위한 수학 기초
__01 신경망의 필수 함수
__02 신경망의 이해를 돕는 수열과 점화식
__03 신경망에서 많이 사용하는 시그마 기호
__04 신경망의 이해를 돕는 벡터
__05 신경망의 이해를 돕는 행렬
__06 신경망을 위한 미분의 기본
__07 신경망을 위한 편미분의 기본
__08 연쇄법칙
__09 다변수 함수의 근사식
__10 경사하강법의 의미와 식
__11 엑셀로 경사하강법 살펴보기
__12 최적화 문제 및 회귀분석
Chapter 3 신경망 최적화
__01 신경망의 파라미터와 변수
__02 신경망 변수의 관계식
__03 학습 데이터와 정답 데이터
__04 신경망의 비용함수
__05 엑셀로 신경망의 가중치와 편향 결정하기
Chapter 4 신경망과 오차역전파법
__01 경사하강법 다시 살펴보기
__02 유닛의 오차
__03 신경망과 오차역전파법
__04 엑셀로 신경망의 오차역전파법 체험하기
Chapter 5 딥러닝과 합성곱 신경망
__01 악마가 설명하는 합성곱 신경망의 구조
__02 소악마의 활동과 합성곱 신경망의 연관 관계
__03 합성곱 신경망 변수의 관계식
__04 엑셀로 합성곱 신경망 살펴보기
__05 합성곱 신경망과 오차역전파법
__06 엑셀로 합성곱 신경망의 오차역전파법 살펴보기
Appendix 부록
__A 학습 데이터 1
__B 학습 데이터 2
__C 패턴 유사도를 수식으로 표현하기