서브메뉴

본문

혼자 공부하는 머신러닝+딥러닝 (구글 코랩으로 환경 설정 없이 실습 가능)
혼자 공부하는 머신러닝+딥러닝 (구글 코랩으로 환경 설정 없이 실습 가능)
저자 : 박해선
출판사 : 한빛미디어
출판년 : 2020
ISBN : 9791162243664

책소개


- 혼자 해도 충분하다! 1:1 과외하듯 배우는 인공지능 자습서
이 책은 수식과 이론으로 중무장한 머신러닝, 딥러닝 책에 지친 ‘독학하는 입문자’가 ‘꼭 필요한 내용을 제대로’ 학습할 수 있도록 구성했다. 구글 머신러닝 전문가(Google ML expert)로 활동하고 있는 저자는 여러 차례의 입문자들과 함께한 머신러닝&딥러닝 스터디와 번역·집필 경험을 통해 ‘무엇을’ ‘어떻게’ 학습해야 할지 모르는 입문자의 막연함을 이해하고, 과외 선생님이 알려주듯 친절하게 핵심적인 내용을 콕콕 집어준다. 컴퓨터 앞에서 [손코딩]을 따라하고, 확인 문제를 풀다 보면 그간 어렵기만 했던 머신러닝과 딥러닝을 개념을 스스로 익힐 수 있을 것이다!

- 베타리더가 함께 만든 입문서
베타리딩 과정을 통해 입문자에게 적절한 난이도, 분량, 학습 요소 등을 고민하고 반영했다. 어려운 용어와 개념은 한 번 더 풀어 쓰고, 복잡한 설명은 눈에 잘 들어오는 그림으로 풀어 냈다. ‘혼자 공부해본’ 여러 입문자의 마음과 눈높이가 책 곳곳에 반영된 것이 이 책의 가장 큰 장점이다.

목차


Chapter 01 나의 첫 머신러닝 ▶ 이 생선의 이름은 무엇인가요
__ 01-1 인공지능과 머신러닝, 딥러닝 ▶ 인공지능과 머신러닝, 딥러닝은 무엇일까요
____ 인공지능이란
____ 머신러닝이란
____ 딥러닝이란
____ 키워드로 끝내는 핵심 포인트
____ 이 책에서 배울 것은
__ 01-2 코랩과 주피터 노트북 ▶ 코랩과 주피터 노트북으로 손코딩 준비하기
____ 구글 코랩
____ 텍스트 셀
____ 코드 셀
____ 노트북
____ 키워드로 끝내는 핵심 포인트
____ 표로 정리하는 툴바와 마크다운
____ 확인 문제
__ 01-3 마켓과 머신러닝 ▶ 마켓을 예로 들어 머신러닝을 설명합니다.
____ 생선 분류 문제
____ 첫 번째 머신러닝 프로그램
____ [문제해결 과정] 도미와 빙어 분류
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 02 데이터 다루기 ▶ 수상한 생선을 조심하라!
__ 02-1 훈련 세트와 테스트 세트 ▶ 모델을 훈련 시키는 훈련 세트와 검증하는 테스트 세트로 나누어 학습하기
____ 지도 학습과 비지도 학습
____ 훈련 세트와 테스트 세트
____ 샘플링 편향
____ 넘파이
____ 두 번째 머신러닝 프로그램
____ [문제해결 과정] 훈련 모델 평가
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 02-2 데이터 전처리 ▶ 정교한 결과 도출을 위한 데이터 전처리 알아보기
____ 넘파이로 데이터 준비하기
____ 사이킷런으로 훈련 세트와 테스트 세트 나누기
____ 수상한 도미 한 마리
____ 기준을 맞춰라
____ 전처리 데이터로 모델 훈련하기
____ [문제해결 과정] 스케일이 다른 특성 처리
____ 키워드로 끝나는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 03 회귀 알고리즘과 모델 규제 ▶ 농어의 무게를 예측하라!
__ 03-1 k-최근접 이웃 회귀 ▶ 회귀 문제를 이해하고 k-최근접 이웃 알고리즘으로 풀어 보기
____ k-최근접 이웃 회귀
____ 데이터 준비
____ 결정계수(R2)
____ 과대적합 vs 과소적합
____ [문제해결 과정] 회귀 문제 다루기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 03-2 선형 회귀 ▶ 사이킷런으로 선형 회귀 모델 만들어 보기
____ k-최근접 이웃의 한계
____ 선형 회귀
____ 다항 회귀
____ [문제해결 과정] 선형 회귀로 훈련 세트 범위 밖의 샘플 예측
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 03-3 특성 공학과 규제 ▶ 특성 공학과 규제 알아보기
____ 다중 회귀
____ 데이터 준비
____ 사이킷런의 변환기
____ 다중 회귀 모델 훈련하기
____ 규제
____ 릿지 회귀
____ 라쏘 회귀
____ [문제해결 과정] 모델의 과대적합을 제어하기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 04 다양한 분류 알고리즘 ▶ 럭키백의 확률을 계산하라!
__ 04-1 로지스틱 회귀 ▶ 로지스틱 회귀 알고리즘을 배우고 이진 분류 문제에서 클래스 확률 예측하기
____ 럭키백의 확률
____ 로지스틱 회귀
____ [문제해결 과정] 로지스틱 회귀로 확률 예측
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 04-2 확률적 경사 하강법 ▶ 경사 하강법 알고리즘을 이해하고 대량의 데이터에서 분류 모델을 훈련하기
____ 점진적인 학습
____ SGDClassifier
____ 에포크와 과대/과소적합
____ [문제해결 과정] 점진적 학습을 위한 확률적 경사 하강법
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 05 트리 알고리즘 ▶ 화이트 와인을 찾아라!
__ 05-1 결정 트리 ▶ 결정 트리 알고리즘을 사용해 새로운 분류 문제 다루기
____ 로지스틱 회귀로 와인 분류하기
____ 결정 트리
____ [문제해결 과정] 이해하기 쉬운 결정 트리 모델
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 05-2 교차 검증과 그리드 서치 ▶ 검증 세트가 필요한 이유를 이해하고 교차 검증해 보기
____ 검증 세트
____ 교차 검증
____ 하이퍼파라미터 튜닝
____ [문제해결 과정] 최적의 모델을 위한 하이퍼파라미터 탐색
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 05-3 트리의 앙상블 ▶ 앙상블 학습을 알고 실습해 보기
____ 정형 데이터와 비정형 데이터
____ 랜덤 포레스트
____ 엑스트라 트리
____ 그레이디언트 부스팅
____ 히스토그램 기반 그레이디언트 부스팅
____ [문제해결 과정] 앙상블 학습을 통한 성능 향상
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 06 비지도 학습 ▶ 비슷한 과일끼리 모으자!
__ 06-1 군집 알고리즘 ▶ 흑백 이미지 분류 방법과 비지도 학습, 군집 알고리즘 이해하기
____ 과일 사진 데이터 준비하기
____ 픽셀값 분석하기
____ 평균값과 가까운 사진 고르기
____ [문제해결 과정] 비슷한 샘플끼리 모으기
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 06-2 k-평균 ▶ k-평균 알고리즘 작동 방식을 이해하고 비지도 학습 모델 만들기
____ k-평균 알고리즘 소개
____ KMeans 클래스
____ 클러스터 중심
____ 최적의 k 찾기
____ [문제해결 과정] 과일을 자동으로 분류하기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 06-3 주성분 분석 ▶ 차원을 알고 차원 축소 알고리즘 PC 모델 만들기
____ 차원과 차원 축소
____ 주성분 분석 소개
____ PCA 클래스
____ 원본 데이터 재구성
____ 설명된 분산
____ 다른 알고리즘과 함께 사용하기
____ [문제해결 과정] 주성분 분석으로 차원 축소
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 07 딥러닝을 시작합니다 ▶ 패션 럭키백을 판매합니다!
__ 07-1 인공 신경망 ▶ 텐서플로로 간단한 인공 신경망 모델 만들기
____ 패션 MNIST
____ 로지스틱 회귀로 패션 아이템 분류하기
____ 인공 신경망
____ 인공 신경망으로 모델 만들기
____ 인공 신경망으로 패션 아이템 분류하기
____ [문제해결 과정] 인공 신경망 모델로 성능 향상
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 07-2 심층 신경망 ▶ 인공 신경망에 층을 추가하여 심층 신경망 만들어 보기
____ 2개의 층
____ 심층 신경망 만들기
____ 층을 추가하는 다른 방법
____ 렐루 활성화 함수
____ 옵티마이저
____ [문제해결 과정] 케라스 API를 활용한 심층 신경망
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 07-3 신경망 모델 훈련 ▶ 인경 신경망 모델 훈련의 모범 사례 학습하기
____ 손실 곡선
____ 검증 손실
____ 드롭아웃
____ 모델 저장과 복원
____ 콜백
____ [문제해결 과정] 최상의 신경망 모델 얻기
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 08 이미지를 위한 인공 신경망 ▶ 패션 럭키백의 정확도를 높입니다!
__ 08-1 합성곱 신경망의 구성 요소 ▶ 합성곱 신경망의 개념과 동작 원리를 배우고 간단한 실습하기
____ 합성곱
____ 케라스 합성곱 층
____ 합성곱 신경망의 전체 구조
____ [문제해결 과정] 합성곱 층과 풀링 층 이해하기
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 08-2 합성곱 신경망을 사용한 이미지 분류 ▶ 케라스 API로 합성곱 신경망 모델 만들기
____ 패션 MNIST 데이터 불러오기
____ 합성곱 신경망 만들기
____ 모델 컴파일과 훈련
____ [문제해결 과정] 케라스 API로 합성곱 신경망 구현
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 08-3 합성곱 신경망의 시각화 ▶ 신경망이 이미지에서 학습하는 게 무엇인지 이해하기
____ 가중치 시각화
____ 함수형 API
____ 특성 맵 시각화
____ [문제해결 과정]
____ 시각화로 이해하는 합성곱 신경망
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

Chapter 09 텍스트를 위한 인공 신경망 ▶ 한빛 마켓의 댓글을 분석하라!
__ 09-1 순차 데이터와 순환 신경망 ▶ 순차 데이터의 특징과 개념 이해하기
____ 순차 데이터
____ 순환 신경망
____ 셀의 가중치와 입출력
____ [문제해결 과정] 순환 신경망으로 순환 데이터 처리
____ 키워드로 끝내는 핵심 포인트
____ 확인 문제
__ 09-2 순환 신경망으로 IMDB 리뷰 분류하기 ▶ 텐서플로 순환 신경망으로 영화 리뷰 분류하기
____ IMDB 리뷰 데이터셋
____ 순환 신경망 만들기
____ 순환 신경망 훈련하기
____ 단어 임베딩을 사용하기
____ [문제해결 과정] 케라스 API로 순환 신경망 구현
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제
__ 09-3 LSTM과 GRU 셀 ▶ 순환 신경망의 중요 기술을 사용해 모델 만들어 보기
____ LSTM 구조
____ LSTM 신경망 훈련하기
____ 순환층에 드롭아웃 적용하기
____ 2개의 층을 연결하기
____ GRU 구조
____ GRU 신경망 훈련하기
____ [문제해결 과정] LSTM과 GRU 셀로 훈련
____ 키워드로 끝내는 핵심 포인트
____ 핵심 패키지와 함수
____ 확인 문제

__ 부록 A 한발 더 나아가기
__ 부록 B 에필로그

____ 정답 및 해설
____ 찾아보기

QuickMenu