서브메뉴

본문

비전 시스템을 위한 딥러닝 (신경망을 활용한 엔드투엔드 컴퓨터 비전 애플리케이션 구축하기)
비전 시스템을 위한 딥러닝 (신경망을 활용한 엔드투엔드 컴퓨터 비전 애플리케이션 구축하기)
저자 : 모하메드 엘겐디
출판사 : 한빛미디어
출판년 : 2021
ISBN : 9791162244975

책소개


인공지능에서 가장 빛나는 컴퓨터 비전의 모든 것

컴퓨터 비전은 최근 인공지능과 딥러닝의 눈부신 발전과 함께 얼굴 인식, 의학 영상, 자율주행 등 다양한 산업에서 괄목할 만한 성과를 보여주고 있다. 그중 가장 흥미로운 기술은 주행 시 전방의 차량이나 장애물을 감지해 차의 속도를 스스로 조절하는 자율주행이다. 이 책에서는 컴퓨터가 이런 시각 정보를 어떻게 얻는지, 컴퓨터 비전에서 딥러닝을 어떻게 응용하는지 매우 실용적인 관점으로 안내한다.

고등학교 수학 교과 과정을 배운 독자라면 누구나 딥러닝을 가능케 하는 원리와 개념을 이해할 수 있으며, 이미지 생성부터 얼굴 인식까지 다양하게 응용되는 딥러닝 구조를 배울 수 있다. 이 책에 담긴 고급 딥러닝 알고리즘을 활용해 이미지, 비디오 및 실생활에서 물체를 식별하고 반응할 수 있는 컴퓨터 비전 시스템을 구축하는 방법을 익히고, 모든 산업에서 인정받는 엔지니어로 거듭나길 바란다.

목차


[PART I 딥러닝 기초]

CHAPTER 1 컴퓨터 비전 입문

1.1 컴퓨터 비전
1.2 컴퓨터 비전 응용 분야
1.3 컴퓨터 비전 파이프라인 전체 처리 과정
1.4 이미지 입력
1.5 이미지 전처리
1.6 특징 추출
1.7 분류 학습 알고리즘
1.8 마치며

CHAPTER 2 딥러닝과 신경망

2.1 퍼셉트론
2.2 다층 퍼셉트론
2.3 활성화 함수
2.4 순방향 계산
2.5 오차 함수
2.6 최적화 알고리즘
2.7 역전파 알고리즘
2.8 마치며

CHAPTER 3 합성곱 신경망

3.1 다층 퍼셉트론을 이용한 이미지 분류
3.2 합성곱 신경망 구조
3.3 합성곱 신경망의 기본 요소
3.4 CNN을 이용한 이미지 분류
3.5 과적합을 방지하기 위해 드롭아웃층 추가하기
3.6 컬러 이미지의 합성곱 연산(3D 이미지)
3.7 프로젝트: 컬러 이미지 분류 문제
3.8 마치며

CHAPTER 4 딥러닝 프로젝트 시동 걸기와 하이퍼파라미터 튜닝

4.1 성능 지표란
4.2 베이스라인 모델 설정하기
4.3 학습 데이터 준비하기
4.4 모델을 평가하고 성능 지표 해석하기
4.5 신경망을 개선하고 하이퍼파라미터 튜닝하기
4.6 학습 및 최적화
4.7 최적화 알고리즘
4.8 과적합을 방지하기 위한 규제화 기법
4.9 배치 정규화
4.10 프로젝트: 이미지 분류 정확도 개선하기
4.11 마치며

[PART II 이미지 분류와 탐지]

CHAPTER 5 고급 합성곱 신경망 구조

5.1 CNN의 디자인 패턴
5.2 LeNet-5
5.3 AlexNet
5.4 VGGNet
5.5 인셉션과 GoogLeNet
5.6 ResNet
5.7 마치며

CHAPTER 6 전이학습

6.1 전이학습으로 해결할 수 있는 문제
6.2 전이학습이란
6.3 전이학습의 원리
6.4 전이학습의 세 가지 방식
6.5 적합한 전이학습 수준 선택하기
6.6 오픈 소스 데이터셋
6.7 프로젝트 1: 사전 학습된 신경망을 특징 추출기로 사용하기
6.8 프로젝트 2: 미세 조정
6.9 마치며

CHAPTER 7 R-CNN, SSD, YOLO를 이용한 사물 탐지

7.1 사물 탐지 알고리즘의 일반적인 프레임워크
7.2 영역 기반 합성곱 신경망
7.3 싱글샷 탐지기
7.4 YOLO
7.5 프로젝트: 자율주행차를 위한 싱글샷 탐지기 학습하기
7.6 마치며

[PART III 생성 모델과 시각 임베딩]

CHAPTER 8 생성적 적대 신경망

8.1 GAN 구조
8.2 GAN 모델의 평가 방법
8.3 GAN 응용 분야
8.4 프로젝트: GAN 모델 직접 구현해보기
8.5 마치며

CHAPTER 9 딥드림과 신경 스타일 전이

9.1 합성곱 신경망이 본 세계는 어떤 것일까
9.2 딥드림
9.3 신경 스타일 전이
9.4 마치며

CHAPTER 10 시각 임베딩

10.1 시각 임베딩 응용 분야
10.2 임베딩 학습하기
10.3 손실 함수
10.4 정보량이 높은 데이터를 골라내는 마이닝
10.5 프로젝트: 임베딩 신경망 학습하기
10.6 현재 성능 더욱 끌어올리기
10.7 마치며
10.8 참고 문헌

APPENDIX A 실습 환경 설정하기

A.1 코드 저장소 내려받기
A.2 아나콘다 설치하기
A.3 딥러닝 실습 환경 설정하기
A.4 AWS EC2 환경 설정하기

QuickMenu