서브메뉴
검색
본문
Powered by NAVER OpenAPI
-
구글 빅쿼리 완벽 가이드 (빅데이터, AI, 머신러닝 엔지니어를 위한 대용량 데이터 분석 도구)
저자 : 발리아파 락쉬마난^조던 티가니
출판사 : 책만
출판년 : 2020
ISBN : 9791189909239
책소개
빅데이터, 데이터 엔지니어링, 머신러닝을 위한 대용량 데이터 분석과 처리의 모든 것
협업과 신속함을 갖춘 작업 공간을 구축하는 동시에 페타바이트 규모의 데이터셋을 처리해보자. 이 책은 기업 전체에서 추출한 데이터를 통합하고 대화형 데이터 분석과 대규모 데이터셋 기반의 머신러닝을 가능케 하는 쿼리 엔진을 제공하는 구글 빅쿼리에 대한 완벽 가이드다. 기업은 빅쿼리를 사용해 하나의 편리한 프레임워크로 데이터를 효율적으로 저장, 쿼리, 수집, 학습할 수 있다.
이 책의 저자 발리아파 락쉬마난과 조던 티가니는 공개 클라우드 상에서 자동으로 확장되는 서버리스 아키텍처에 기반한 최신 데이터 웨어하우징을 위한 모범 사례를 제시하고 있다. 이제 막 빅쿼리를 시작하면서 전반적인 기능을 훑어보고자 하는 독자는 물론 빅쿼리를 이용해 특정 업무를 해결하고자 하는 독자에게도 완벽한 가이드가 되어 줄 것이다.
목차
[1장] 구글 빅쿼리
데이터 처리 아키텍처
__관계형 데이터베이스 관리 시스템
__맵리듀스 프레임워크
__빅쿼리: 서버리스, 분산 SQL 엔진
빅쿼리로 작업하기
__여러 데이터셋에서 통찰력 도출하기
__ETL, EL, ELT
__강력한 분석
__관리의 단순함
빅쿼리는 어떻게 만들어졌는가
빅쿼리는 어떻게 구현할 수 있었을까
__컴퓨팅 및 스토리지 분리
__스토리지 및 네트워킹 인프라
__관리형 저장소
__구글 클라우드 플랫폼과 통합
__보안 및 규정 준수
정리
[2장] 쿼리 필수 요소
간단한 쿼리
__SELECT로 행 검색하기
__AS로 컬럼 이름에 별칭 지정하기
__WHERE로 필터링하기
__SELECT *, EXCEPT, REPLACE
__WITH를 사용한 서브 쿼리
__ORDER BY로 정렬하기
집계
__GROUP BY로 집계하기
__COUNT로 레코드 수 세기
__HAVING으로 그룹화된 항목 필터링하기
__DISTINCT로 고윳값 찾기
배열과 구조체 기초
__ARRAY_AGG로 배열 만들기
__구조체의 배열
__튜플
__배열 활용하기
__배열 풀기
테이블 조인
__조인의 작동 원리
__이너 조인
__크로스 조인
__아우터 조인
저장 및 공유
__쿼리 기록 및 캐싱
__저장된 쿼리
__뷰와 공유 쿼리의 비교
정리
[3장] 데이터 타입, 함수, 연산자
숫자형과 함수
__수학 함수
__표준 규격 부동 소수점 분할
__SAFE 함수
__비교
__NUMERIC을 사용한 정밀 소수 계산
불(BOOL) 다루기
__논리 연산
__조건식
__COALESCE로 NULL 값을 깨끗하게 처리하기
__타입 변환과 타입 강제
__불리언 변환을 피하기 위해 COUNTIF 사용하기
문자열 함수
__국제화
__출력 및 파싱
__문자열 조작 함수
__변환 함수
__정규 표현식
__문자열 함수 정리
타임스탬프 다루기
__타임스탬프 값의 파싱과 형식화
__달력 정보 추출하기
__타임스탬프 연산하기
__Date, Time 그리고 DateTime
GIS 함수 사용하기
정리
[4장] 빅쿼리로 데이터 로드하기
가장 기본적인 방법
__로컬에서 데이터 로드하기
__스키마 지정하기
__새 테이블에 복사하기
__데이터 관리(DDL과 DML)
__데이터를 효율적으로 로드하기
통합 쿼리와 외부 데이터 원본
__통합 쿼리 사용하기
__통합 쿼리와 외부 데이터 원본의 사용 사례
__대화형 탐색과 구글 시트 데이터의 쿼리
__클라우드 빅테이블의 데이터에 대한 SQL 쿼리
전송과 내보내기
__데이터 전송 서비스
__스택드라이버 로그 내보내기
__클라우드 데이터플로우로 빅쿼리 데이터 읽고 쓰기
온프레미스 데이터의 이동
__데이터 마이그레이션 방법
정리
[5장] 빅쿼리를 활용한 개발
프로그래밍 방식을 활용한 개발
__REST API 활용하기
__구글 클라우드 클라이언트 라이브러리
데이터 과학 도구에서 빅쿼리 사용하기
__구글 클라우드 플랫폼의 노트북
__빅쿼리, 판다스, 그리고 주피터의 결합
__R에서 빅쿼리 다루기
__클라우드 데이터플로우
__JDBC/ODBC 드라이버
__빅쿼리 데이터를 G 스위트의 구글 슬라이드에 포함하기
빅쿼리와 배시 스크립팅
__데이터셋과 테이블 생성
__쿼리의 실행
__빅쿼리 객체
정리
[6장] 빅쿼리 아키텍처
아키텍처 살펴보기
__쿼리 요청의 수명
__빅쿼리 업그레이드
쿼리 엔진(드레멜)
__드레멜 아키텍처
__쿼리 실행
스토리지
__스토리지 데이터
__메타데이터
정리
[7장] 성능 및 비용 최적화
성능 최적화의 기본 원칙
__성능의 핵심 요소
__비용 통제하기
측정과 문제 해결
__REST API로 쿼리 속도 측정하기
__빅쿼리 워크로드 테스터로 쿼리 속도 측정하기
__스택드라이버를 사용해 워크로드 문제 해결하기
__쿼리 실행 계획 정보 읽기
__작업 세부 정보에서 쿼리 계획 정보 가져오기
__쿼리 계획 정보 시각화
쿼리 속도 높이기
__I/O 최소화
__이전 쿼리 결과 캐싱하기
__효율적으로 조인하기
__워커의 과도한 작업 피하기
__근사 집계 함수 사용하기
데이터 저장 및 접근 방법 최적화
__네트워크 오버헤드 최소화하기
__효율적인 저장 포맷 선택하기
__스캔 크기를 줄이기 위해 테이블 파티셔닝하기
__높은 카디널리티 키에 기반한 클러스터링 테이블
__시간에 구애받지 않는 사용 사례
정리
__체크리스트
[8장] 고급 쿼리
재사용 가능한 쿼리
__파라미터화된 쿼리
__SQL 사용자 정의 함수
__쿼리 일부 재사용하기
고급 SQL
__배열 다루기
__윈도우 함수
__테이블 메타데이터
__데이터 정의 언어와 데이터 조작 언어
SQL 이상의 기능
__자바스크립트 사용자 정의 함수
__스크립팅
고급 함수
__빅쿼리 지리 정보 시스템
__유용한 통계 함수들
__해시 알고리즘
정리
[9장] 빅쿼리 머신러닝
머신러닝이란
__머신러닝 문제 공식화하기
__머신러닝 문제의 유형
회귀 모델 생성하기
__레이블 선택하기
__피처를 찾기 위한 데이터셋 탐색
__학습 데이터셋 생성하기
__모델 학습 및 평가
__모델로 예측하기
__모델 가중치 검사하기
__더 복잡한 회귀 모델
분류 모델 생성하기
__학습
__평가
__예측
__임계값 고르기
빅쿼리 ML 커스텀하기
__데이터 분할 제어하기
__클래스 균형 맞추기
__정규화
k 평균 클러스터링
__어떤 것을 클러스터링할까
__자전거 대여소 클러스터링하기
__클러스터링 수행하기
__클러스터 이해하기
__데이터 기반 의사 결정
추천 시스템
__무비렌즈 데이터셋
__행렬 분해
__추천 만들기
__사용자와 영화 정보 통합하기
GCP의 커스텀 머신러닝 모델
__하이퍼파라미터 튜닝
__AutoML
__텐서플로우 지원
정리
[10장] 빅쿼리 관리 및 보안
인프라스트럭처 보안
계정 및 접근 관리
__계정
__역할
__리소스
빅쿼리 관리
__작업 관리
__사용자에게 권한 부여
__삭제된 레코드와 테이블의 복구
__지속적 통합/지속적 배포
__대시보드와 모니터링, 그리고 감사 로깅
가용성과 재해 복구, 암호화
__존과 리전 그리고 멀티리전
__빅쿼리와 장애 처리
__내구성과 백업 그리고 재해 복구
__개인정보 보호와 암호화
규제의 준수
__데이터 지역성
__데이터의 서비스에 대한 접근 제한
__개인과 관련된 모든 트랜잭션 제거하기
__데이터 유실 방지
__CMEK
__데이터 유출 보호
정리
[한국어판 특별 부록] 클라우드 컴포저와 빅쿼리로 ELT 파이프라인 만들기
ELT 파이프라인의 큰 그림
클라우드 컴포저란
클라우드 컴포저 생성 및 환경 설정
클라우드 컴포저 웹 서버 UI
DAG 만들기
ELT 파이프라인 만들기