서브메뉴

본문

빅데이터 분석을 위한 스칼라와 스파크 (대용량 빅데이터 분석과 머신 러닝까지 활용하는)
빅데이터 분석을 위한 스칼라와 스파크 (대용량 빅데이터 분석과 머신 러닝까지 활용하는)
저자 : 레자울 카림|스리다 알라
출판사 : 에이콘출판
출판년 : 2019
ISBN : 9791161752402

책소개

2019년 대한민국학술원 우수학술도서 선정도서

스파크를 이용해 데이터 분석 방법을 배우려는 사람에게 매우 유용한 책이다. 가장 먼저 스칼라를 소개하고, 스칼라 애플리케이션 개발에 필요한 객체지향 개념과 함수형 프로그래밍 개념을 설명한다. 스파크에 초점을 맞춰 RDD와 데이터 프레임을 사용한 기본 추상화를 다룬다.
그 다음 스파크 SQL, GraphX, 스파크 구조화 스트리밍을 사용해 구조화된 데이터와 구조화되지 않은 데이터를 분석하고 모니터링, 설정, 디버깅, 테스팅, 배포와 같은 고급 주제를 살펴본다. 또한 SparkR 및 PySpark API를 사용한 스파크 애플리케이션을 개발하는 방법, 아파치 제플린(Zeppelin)을 사용한 대화식 데이터 분석, Alluxio를 함께 사용해 인메모리 데이터를 처리하는 방법을 다룬다.
이 책을 다 살펴본 후, 스파크를 완벽하게 이해하고 풀 스택 데이터 분석을 수행할 수 있을 것이다. 이 책은 최신 2.3.2 버전을 기준으로 작성됐다. 기존의 원서에서 제공하는 코드의 오타와 호환성을 수정한 옮긴이의 github 저장소를 제공한다.

■ 스칼라의 객체지향 개념과 함수형 프로그래밍 개념 이해
■ 스칼라 컬렉션 API 이해
■ 스파크의 핵심 추상화를 알기 위해 RDD와 데이터 프레임으로 작업하기
■ 스파크 SQL과 GraphX를 사용해 구조 데이터와 구조화되지 않은 데이터 분석
■ 스파크 구조화 스트리밍을 사용해 확장 가능하고 내결함성 있는 스트리밍 애플리케이션 개발
■ 스파크 MLlib과 스파크 ML에서 많이 사용되는 알고리즘으로 예측 모델을 구축할 수 있는 분류, 회귀 분석, 차원 감소, 추천 시스템과 같은 머신 러닝 모범 사례
■ 방대한 양의 데이터를 클러스터링하는 클러스터링 모델 구축
■ 스파크 애플리케이션 튜닝, 디버깅, 모니터링 이해
■ 실제 독립형(Standalone), 메소스(Mesos), 얀(YARN), 쿠버네티스(Kubernetes) 모드의 클러스터에 스파크 애플리케이션 배포

스파크를 이용해 데이터 분석 방법을 배우려는 사람에게 매우 유용한 책이다. 스파크나 스칼라에 대한 지식은 없더라도 이전 프로그래밍 경험(특히 다른JVM 언어)이 있다면 스파크나 스칼라에 대한 개념을 이해하는 데 매우 유용하다.
스칼라는 지난 몇 년 동안 특히 데이터 과학과 분석 분야에서 꾸준히 증가하고 있다. 스파크는 스칼라로 작성됐고 분석 분야에서 널리 사용되고 있다. 이 책은 빅데이터를 잘 다룰 수 있는 스파크를 설명한다.
[교보문고에서 제공한 정보입니다.]

출판사 서평

★ 이 책에서 다루는 내용 ★

■ 스칼라의 객체지향 개념과 함수형 프로그래밍 개념 이해
■ 스칼라 컬렉션 API 이해
■ 스파크의 핵심 추상화를 알기 위해 RDD와 데이터 프레임으로 작업하기
■ 스파크 SQL과 GraphX를 사용해 구조 데이터와 구조화되지 않은 데이터 분석
■ 스파크 구조화 스트리밍을 사용해 확장 가능하고 내결함성 있는 스트리밍 애플리케이션 개발
■ 스파크 MLlib과 스파크 ML에서 많이 사용되는 알고리즘으로 예측 모델을 구축할 수 있는 분류, 회귀 분석, 차원 감소, 추천 시스템과 같은 머신 러닝 모범 사례
■ 방대한 양의 데이터를 클러스터링하는 클러스터링 모델 구축
■ 스파크 애플리케이션 튜닝, 디버깅, 모니터링 이해
■ 실제 독립형(Standalone), 메소스(Mesos), 얀(YARN), 쿠버네티스(Kubernetes) 모드의 클러스터에 스파크 애플리케이션 배포

★ 이 책의 대상 독자 ★

스파크를 이용해 데이터 분석 방법을 배우려는 사람에게 매우 유용한 책이다. 스파크나 스칼라에 대한 지식은 없더라도 이전 프로그래밍 경험(특히 다른JVM 언어)이 있다면 스파크나 스칼라에 대한 개념을 이해하는 데 매우 유용하다. 스칼라는 지난 몇 년 동안 특히 데이터 과학과 분석 분야에서 꾸준히 증가하고 있다. 스파크는 스칼라로 작성됐고 분석 분야에서 널리 사용되고 있다. 이 책은 빅데이터를 잘 다룰 수 있는 스파크를 설명한다.

★ 이 책의 구성 ★

1장, ‘스칼라 소개’에서는 스파크의 스칼라 기반 API를 사용해 빅데이터를 분석한다. 시작점으로 스파크 내부가 스칼라로 작성됐음을 설명하고 자연스럽게 스칼라의 역사, 목적, 윈도우/리눅스/맥OS에 스칼라를 설치하는 방법과 같은 기본 내용 등 스칼라에 대해 간단히 설명한다. 그리고 스칼라 웹 프레임워크에 대해 간략히 설명한다. 그다음 자바와 스칼라를 비교 분석한다. 마지막에 스칼라를 시작하기 위해 스칼라 프로그래밍을 살펴본다.

2장, ‘객체지향 언어, 스칼라’에서는 객체지향 프로그래밍(OOP) 패러다임이 완전히 새로운 추상화 계층을 제공한다고 설명한다. 간단히 말해 OOP 언어의 가장 큰 장점인 탐색 가능성,모듈성, 확장성을 설명한다. 특히 스칼라에서 변수를 처리하는 방법을 살펴본다. 스칼라에서 변수, 메소드, 클래스, 객체뿐 아니라 패키지, 패키지 객체, 트레이트, 트레이트 선형화, 자바와의 상호 호환성 등을 다룬다.

3장, ‘함수형 프로그래밍 개념’에서는 스칼라의 함수형 프로그래밍 개념을 소개한다. 스칼라가 데이터 과학자에게 무기가 되는 이유, 스파크 패러다임/순수 함수/고차 함수를 배우는 것이 중요한 이유와 같은 몇 가지 주제를 다룬다. 고차 함수를 사용하는 실제 사용 사례도 함께 소개한다. 그다음 스칼라 표준 라이브러리를 사용해 컬렉션 외부의 고차 함수에서 예외를 처리하는 방법을 살펴본다. 마지막으로 함수형 스칼라가 객체의 가변성에 어떤 영향을 주는지 살펴본다.

4장, ‘컬렉션 API’에서는 스칼라 사용자가 가장 큰 흥미를 얻는 기능 중 하나인 컬렉션 API를 소개한다. 스칼라 컬렉션 API는 매우 강력하고 유연하며 결합된 많은 연산을 갖고 있다. 그리고 스칼라 컬렉션 API의 기능을 소개할 뿐 아니라 다양한 타입의 데이터를 수용하고 다양한 문제를 해결할 때 컬렉션 API의 사용 방법을 소개한다. 마지막으로 스칼라 컬렉션 API, 타입과 계층 구조, 성능 특성, 자바 상호운용성, 스칼라 암시를 설명한다.

5장, ‘스파크로 빅데이터 다루기’에서는 데이터 분석과 빅데이터에 대해 설명한다. 빅데이터에서 제기되는 도전 과제, 분산 컴퓨팅 처리 방법, 함수형 프로그래밍 접근 방식을 살펴본다. 구글의 맵리듀스, 아파치 하둡, 아파치 스파크를 소개하고, 해당 오픈소스의 접근 방법과 기술의 사용 방법을 살펴본다. 아파치 스파크가 처음 만들어졌던 이유와 빅데이터 분석 및 처리 시 부딪혔던 도전 과제 등 아파치 스파크의 진화 과정을 살펴본다.

6장, ‘스파크로 REPL과 RDD로 작업’에서는 스파크 작동 방법을 다룬다. 그다음 아파치 스파크의 기본 추상화인 RDD를 소개하고 단순히 스칼라와 유사한 API를 제공하는 분산 컬렉션인지 확인한다. 아파치 스파크의 배포 옵션을 살펴보고 스파크 셸을 사용해 로컬에서 실행한다. 아파치 스파크의 내부 구조, RDD의 개념, DAG, RDD 계보, 트랜스포메이션, 액션을 다룬다.

7장, ‘특수 RDD 연산’에서는 다양한 요구 사항을 RDD가 어떻게 충족시키는지, 어떻게 RDD가 새로운 기능(위험성도 갖고 있다)을 제공하는지에 대해 중점적으로 다룬다. 또한 브로드캐스트 변수와 스파크에서 제공하는 누산기와 같은 유용한 객체를 살펴본다. 마지막으로 셔플링과 집계를 다룬다.

8장, ‘스파크 SQL’에서는 RDD의 하이레벨 추상화인 스파크 SQL로 구조화된 데이터를 분석하는 방법과 스파크 SQL API로 구조화된 데이터를 간단하면서도 견고하게 쿼리하는 방법을 소개한다. 또한 데이터셋을 소개하고 데이터셋, 데이터 프레임, RDD 간의 차이점을 살펴본다. 마지막으로 데이터 프레임 API를 사용해 복잡한 데이터 분석을 수행할 수 있는 조인 연산과 윈도우 함수를 살펴본다.

9장, ‘스파크 스트리밍’에서는 스파크 스트리밍을 소개하고, 스파크 API를 사용해 데이터 스트림을 스파크 스트리밍으로 처리하는 방법을 설명한다. 또한 트위터에 글을 트윗하고 처리하는 실제 사례를 사용해서 실시간 데이터 스트림을 처리하는 다양한 방법을 다룬다. 실시간 처리를 위해 아파치 카프카와 통합하는 방법도 살펴본다. 마지막으로 애플리케이션에서 실시간 쿼리를 제공할 수 있는 구조화 스트리밍을 살펴본다.

10장, ‘GraphX’에서는 그래프를 사용해 얼마나 많은 실제 문제를 모델링하고 해결할 수 있는지 살펴본다. 페이스북을 예로 들어 그래프 이론, 스파크의 그래프 처리 라이브러리 GraphX, VertexRDD와 EdgeRDD, 그래프 연산자, aggregateMessages, triangleCount, Pregel API, 페이지랭크 알고리즘과 같은 사용 사례를 살펴본다.

11장, ‘머신 러닝 학습: 스파크 MLlib과 ML’에서는 통계 머신 러닝에 대한 개념적인 소개를 제공한다. 스파크의 머신 러닝 API인 스파크 MLlib과 스파크 ML을 집중적으로 다룬다. 디시전 트리(decision tree)와 랜덤 포레스트 알고리즘(random forest algorithm)을 이용한 분류 작업을 해결하는 방법과 선형 회귀 알고리즘을 이용한 회귀 문제를 해결한다.
또한 분류 모델을 훈련하기 전에 피처 추출에서 원핫(one-hot) 인코딩과 차원 축소 알고리즘을 사용함으로써 얻을 수 있는 이점을 보여준다. 그다음에는 협업 필터링 기반 영화 추천 시스템을 개발하는 단계별 예제를 보여준다.

12장, ‘고급 러닝 머신 모범 사례’에서는 스파크를 사용한 머신 러닝 고급 주제에 대한 이론과 실용적인 측면을 살펴본다. 그리드 검색, 교차 검증, 하이퍼파라미터 튜닝을 사용해 성능을 최적화하는 머신 러닝 모델 튜닝 방법을 배운다. 그리고 모델 기반의 추천 알고리즘 중인 하나인 ALS를 사용해 확장 가능한 추천 시스템 개발 방법을 다룬다. 마지막으로 주제 모델링 애플리케이션은 텍스트 클러스터링 기법을 활용한다.

13장, ‘나이브 베이즈’에서는 빅데이터 분야의 머신 러닝이 학계와 산업계 모두의 연구 분야에 큰 영향을 미친 급진적인 결합이라고 말한다. 빅데이터는 실제 가치를 찾기 위해 ML, 데이터 분석 툴, 알고리즘에 어려운 과제를 부과한다. 그러나 거대한 데이터셋을 기반으로 미래를 예측하는 것은 결코 쉬운 일이 아니다. 미래 예측과 관련해 ML을 자세히 살펴보고, 간단하지만 강력한 방법으로 다항 분류, 베이지안 추론, 나이브 베이즈, 디시전 트리, 나이브 베이즈와 디시전 트리의 비교 분석 등 확장 가능한 분류 모델과 개념을 구축하는 방법을 알아본다.

14장, ‘스파크 MLlib으로 데이터 클러스터링’에서는 스파크의 기본 아키텍처 기반으로 스파크가 클러스터 모드에서 어떻게 동작하는지 설명한다. 이전 여러 장에서 다양한 스파크 API를 사용해 실제 애플리케이션의 개발 방법을 살펴봤다면 14장에서는 클러스터에 전체 스파크 애플리케이션을 배포하는 방법뿐 아니라 기존 하둡을 설치했는지 또는 설치하지 않았는지 확인한다.

15장, ‘스파크 ML을 이용한 텍스트 분석’에서는 스파크 ML을 사용해 텍스트 분석을 설명한다. 텍스트 분석은 머신 러닝의 넓은 분야며, 정서 분석, 채팅 봇, 이메일 스팸 탐지, 자연어 처리 등과 같은 많은 사용 사례에서 유용하다. 10,000개의 트위터 샘플 데이터셋을 텍스트 분류 사용 사례에 중점을 둔 텍스트 분석에 스파크를 사용하는 방법을 살펴본다. 또한 실제 텍스트를 잘 모르는 상태에서 문서에서 주제를 생성하는 인기 있는 기술인 LDA를 살펴보고, LDA가 잘 동작하는지 트위터 데이터를 기반으로 텍스트 분류를 구현한다.

16장, ‘스파크 튜닝’에서는 스파크 내부를 깊이 있게 살펴본다. 그리고 스파크를 사용하는 것이 스칼라 컬렉션을 사용하는 것처럼 느껴지지만 실제 스파크가 분산 시스템에서 실행된다는 것을 잊지 말아야 한다. 또한 스파크 잡 모니터링, 스파크 설정, 스파크 애플리케이션 개발 시 발생하는 일반적인 실수, 최적화 기술에 대해 설명한다.

17장, ‘클러스터에 스파크 배포’에서는 스파크가 기본 아키텍처를 기반으로 클러스터 모드에서 어떻게 동작하는지 살펴본다. 클러스터에서 스파크 아키텍처, 스파크 생태계, 클러스터 관리를 살펴보고 독립형, 메소스(Mesos), 얀(Yarn), 쿠버네티스(kubernetes)에 스파크 애플리케이션을 배포하는 방법을 살펴본다. 마지막으로 클라우드 기반 AWS 클러스터에 스파크 애플리케이션을 배포하는 방법도 살펴본다.

18장, ‘스파크 테스팅과 디버깅’에서는 분산 배포된 애플리케이션의 테스팅에 대한 어려움을 설명하고, 테스팅을 해결할 방법을 살펴본다. 분산 환경에서 테스팅을 수행하는 방법과 스파크 애플리케이션을 테스팅하고 디버깅하는 방법을 다룬다.

19장, ‘PySpark과 SparkR’에서는 파이썬과 R을 사용해 스파크 코드를 작성하는 데 사용되는 두 API, 즉 PySpark와 SparkR을 설명한다. 먼저 PySpark를 시작하는 방법을 설명한 후 PySpark로 데이터 프레임 API와 UDF에 상호작용하는 방법을 설명한다.
그리고 PySpark를 사용해 데이터 분석을 수행한다. 그다음에 SparkR을 시작하는 방법을 설명한다. 또한 데이터 처리과 조작 방법, SparkR을 사용한 RDD와 데이터 프레임을 사용하는 방법, 마지막으로 SparkR을 사용하는 일부 데이터 시각화 방법을 살펴본다.
부록 A, ‘Alluxio로 스파크의 처리 성능 높이기’에서는 Alluxio를 스파크와 함께 사용해 처리 속도를 향상시키는 방법을 보여준다. Alluxio는 스파크를 포함한 여러 플랫폼에서 많은 애플리케이션의 속도를 높여주는 오픈소스 분산 메모리 저장 시스템이다.
Alluxio의 가능성을 살펴보고 Alluxio을 스파크와 통합해 스파크 잡을 실행할 때마다 메모리에 데이터를 캐시할 필요 없이 더 좋은 성능을 보여주는 부분을 보여준다.
부록 B, ‘아파치 제플린에서 대화형 데이터 분석’에서는 데이터 과학 관점에서 데이터 분석의 대화형, 시각적 효과가 중요함을 설명한다. 제플린은 여러 백엔드와 인터프리터가 있는 대화형, 대규모 데이터 분석을 위한 웹 기반 노트북이다. 그리고 백엔드에서 인터프리터로 스파크를 사용해 대규모 데이터를 분석할 수 있게 아파치 제플린을 사용하는 방법을 설명한다.

★ 지은이의 말 ★

데이터가 지속적으로 증가하면서 데이터를 기반으로 점점 더 복잡한 결정을 내릴 필요성이 생겼다. 또한 빅데이터는 큰 장애물을 생성하고, 기업은 기존 분석 방법을 사용해 적시에 통찰력을 얻지 못하고 있다. 빅데이터 영역은 분석 프레임워크와 많은 관련이 있고, 분석 프레임워크의 범위는 해당 프레임워크가 처리할 수 있는 것에 따라 정의된다. 수백만 방문자의 클릭 스트림에서 온라인 광고 게재 위치를 최적화하기 위해 면밀히 조사하거나, 사기 신호를 식별하기 위해 수십억 건의 거래를 분석하거나, 머신 러닝과 그래프 처리 같은 고급 분석의 필요가 있든지 간에 엄청난 데이터 용량으로부터 자동으로 통찰력을 얻는 방법이 더 분명해지고 있다.

모든 학계와 산업 분야에서 빅데이터 처리, 분석, 데이터 과학 분야의 사실상 표준인 아파치 스파크는 머신 러닝과 그래프 처리 라이브러리를 제공하고 있고, 기업에서 확장성이 뛰어난 클러스터링 컴퓨터 파워로 복잡한 문제를 쉽게 해결할 수 있다. 스파크는 스칼라를 사용해 분산된 프로그램을 작성하는 것을 스파크를 사용한 일반 프로그램을 작성하는 것처럼 느껴지게 한다. 스파크는 ETL 파이프라인에 성능을 크게 향상시키고 맵리듀스 프로그래머가 매일 하둡 프로그래밍을 하다 직면하는 어려움을 경감시킨다.

이 책에서는 스파크와 스칼라를 사용해 머신 러닝, 그래프 처리, 스트리밍, SQL을 스파크에 전달하는 기능을 사용해 최첨단 고급 데이터 분석을 수행하고 MLlib, ML, SQL, GraphX, 기타 라이브러리를 사용한다.

먼저 스칼라로 시작한 후, 스칼라를 살펴본다. 마지막으로 스파크와 스칼라로 빅데이터 분석하는 고급 주제를 다룬다. 부록에서는 SparkR, PySpark, 아파치 제플린, 인메모리 Alluxio에 대한 스칼라 지식을 확장하는 방법을 설명한다. 이 책은 처음부터 끝까지 읽을 필요가 없다. 얻고 싶은 지식이나 관심이 있는 장으로 건너뛰면 된다.
즐겁게 책을 읽기 바란다!

★ 옮긴이의 말 ★

하둡 맵리듀스(Hadoop MapReduce) 프로그래밍은 최근 몇 년 동안 잘 사용되고 있습니다. 또한 데이터가 저장된 하둡 분산 파일 시스템을 기반으로 하는 분석, 추천 프로그래밍은 하둡 내부에서만 가능했기에 개발자들이 하둡 인터페이스를 사용해 개발해야 했습니다. 그러나 일반 개발자가 이해하기 어려운 개념과 인터페이스가 있어 하둡과 하둡 맵리듀스를 잘 이해하는 개발자가 전문적으로 개발하곤 했습니다. 일반 개발자들이 쉽게 분석할 수 있도록 아파치 하이브(Hive) 등 다양한 하둡 관련 프레임워크가 사용되기 시작했습니다. 그러나 여전히 유연하지 않을 뿐 더러 하둡 맵리듀스 개발은 변화되지 않았고, 테스트 코드 개발 역시 쉽지 않았습니다. 하둡 프로그래밍의 약점은 대용량 데이터에 대한 실시간 처리입니다. 따라서 하둡 대신 실시간 데이터를 처리하는 메시징 큐(예, 카프카)를 사용하고 있습니다. 그러다 보니 스트리밍 처리를 처리하기 위해 아파치 스톰(Apache Storm), 스파크 스트리밍(Spark Streaming), 아파치 플링크(Apache Flink) 등 많은 오픈 소스가 쓰이고 있습니다.

저는 현업 개발자이지만 다양한 NoSQL, 대용량, 비즈니스에 관심이 많습니다. 저는 스칼라/스파크를 사용해 애플리케이션을 개발했고, 메소스/마라톤 및 쿠버네티스에서 애플리케이션에서도 애플리케이션을 개발했습니다. 따라서 하둡 맵리듀스 프로그래밍은 스파크로 대체될 것이라는 굳은 믿음이 있습니다. 누구나 스칼라를 제대로 알 수 있다면 하둡 맵리듀스 프로그래밍을 스칼라 기반의 스파크 프로그래밍으로 대체 및 보완할 수 있을 것이라 확신합니다.

저뿐 아니라 많은 개발자가 하둡 맵리듀스 프로그래밍, 기존 파이프라인 프로그래밍 및 머신 러닝 프로그래밍을 점차 스파크 프로그래밍으로 대체되고 보완하고 있습니다. 스트리밍 처리, 대용량 분석 처리, 추천 시스템 개발, 인메모리 병렬처리, 머신 러닝까지 여러 분야의 애플리케이션을 스파크 하나만 알면 어느 정도 진행할 수 있습니다. 따라서 람다 아키텍처를 스파크로 쉽게 처리할 수 있습니다. 스파크는 CNN과 같은 딥러닝을 지원하지 않지만 텐서플로(Tensorflow)와 쉽게 연동할 수 있습니다. 그리고 스파크는 자바, 스칼라, 파이썬, R 언어를 지원하기 때문에 언어에 대한 부담이 가장 덜합니다.

특히 스칼라의 함수형 언어의 특징과 데이터프레임을 추상화한 스칼라 기반의 스파크를 활용함으로써 빅데이터를 논리적인 프로그래밍으로 쉽게 처리할 수 있습니다. 많은 개발자가 스스로 공부하며 빅데이터, 머신 러닝의 영역으로 진입하고 있는데 그에 함께 가고 싶습니다.
이 책은 전반적으로 설명이 많고 그림이 풍부합니다. 특히, 집계 부분은 중요한 내용을 잘 설명하고 있습니다. 저는 이전부터 통계와 머신 러닝을 공부하고 있었는데 실제 스파크 애플리케이션에서 어떻게 연동되는지는 이 책을 통해 잘 이해하게 됐습니다. 머신 러닝을 처음 도전하시는 분에게는 이 책이 좀 어렵다고 느낄 수 있겠지만 많은 도움이 될 것입니다. 빅데이터 분석과 머신 러닝에 대한 많은 내용을 포함한 ‘전과' 같은 이 책이 여러분들에게도 현업에서 큰 도움이 되면 좋겠습니다.

이 책은 원서와 달리 최신 2.3.2 버전으로 작성됐습니다. 기존의 원서에서 제공하는 코드의 오타와 호환성을 수정해 옮긴이의 github 저장소(https://github.com/knight76/Scala-and-Spark-for-Big-Data-Analytics)를 제공하고 있으니, 참고하시기 바랍니다.
[예스24에서 제공한 정보입니다.]

목차정보

1장 스칼라 소개

__스칼라의 역사와 목적

__플랫폼과 편집기

__스칼라 설치와 설정

____자바 설치

____윈도우

____맥 OS

__스칼라: 확장 가능한 언어

____스칼라는 객체지향

____스칼라는 함수형

____스칼라는 정적 타입 지원

____스칼라는 JVM에서 동작

____스칼라는 자바 코드를 실행 가능

____스칼라는 동시 및 동기화 처리 수행 가능

__자바 프로그래머를 위한 스칼라

____모든 타입은 객체

____타입 추론

____스칼라 REPL

____중첩 함수

____import문

____연산자를 메소드로 사용

____메소드와 파라미터 목록

____메소드 안의 메소드

____스칼라 생성자

____정적 메소드 대신 객체

____트레이트

__초보자를 위한 스칼라

____처음 작성하는 스칼라 코드

____대화형으로 스칼라 실행

____컴파일

__요약

2장 객체지향 언어, 스칼라

__스칼라 변수

____참조와 값 불변성

____스칼라의 데이터 타입

__스칼라의 메소드, 클래스, 객체

____스칼라의 메소드

____스칼라의 클래스

____스칼라의 객체

__패키지와 패키지 객체

__자바 상호운용성

__패턴 매칭

__스칼라의 암시

__스칼라의 제네릭

____제네릭 클래스의 정의

__SBT와 기타 빌드 시스템

____SBT로 빌드

____이클립스에 메이븐 사용

____이클립스에서 그래들 사용

__요약

3장 함수형 프로그래밍 개념

__함수형 프로그래밍 소개

____함수형 프로그래밍의 장점

__데이터 과학자를 위한 함수형 스칼라

__스파크를 공부하는 데 와 FP 스칼라를 설명하는 이유

____스파크인 이유

____스칼라와 스파크 프로그래밍 모델

____스칼라와 스파크 생태계

__순수 함수와 고차 함수

____순수 함수

____익명 함수

____고차 함수

____함수를 리턴 값으로 사용

__고차 함수 사용

__함수형 스칼라의 에러 핸들링

____스칼라의 실패와 예외

____예외 던지기

____try와 catch를 사용한 예외 처리

____finally

____Either 생성

____Future

____하나의 태스크를 실행하고 대기

__함수형 프로그래밍과 데이터 가변성

__요약

4장 컬렉션 API

__스칼라 컬렉션 API

__타입과 계층

____Traversable

____Iterable

____Seq, LinearSeq, IndexedSeq

____가변과 불변

____배열

____리스트

____셋

____튜플

____맵

____Option

____exists

____forall

____filter

____map

____take

____groupBy

____init

____drop

____takeWhile

____dropWhile

____flatMap

__성능 특징

____컬렉션 객체의 성능 특징

____컬렉션 객체가 사용하는 메모리 사용량

__자바 상호 운영성

__스칼라 암시 사용

____스칼라의 암시적 변환

__요약

5장 스파크로 빅데이터 다루기

__데이터 분석 소개

____데이터 분석 프로세스 내부

__빅데이터 소개

____빅데이터의 4V

__하둡을 이용한 분산 컴퓨팅

____하둡 분산 파일 시스템(HDFS)

____맵리듀스 프레임워크

__아파치 스파크

____스파크 코어

____스파크 SQL

____스파크 스트리밍

____스파크 GraphX

____스파크 ML

____PySpark

____SparkR

__요약

6장 스파크로 REPL과 RDD 작업

__스파크에 대해 깊이 살펴보기

__아파치 스파크 설치

____스파크 독립형

____얀 기반의 스파크

____메소스 기반의 스파크

____쿠버네티스 기반 스파크

__RDD 소개

____RDD 생성

__스파크 셸의 사용

__트랜스포메이션과 액션

____트랜스포메이션

____액션

__캐싱

__데이터 로드와 저장

____데이터 로드

____RDD 저장

__요약

7장 특수 RDD 연산

__RDD 타입

____쌍 RDD

____DoubleRDD

____SequenceFileRDD

____CoGroupedRDD

____ShuffledRDD

____UnionRDD

____HadoopRDD

____NewHadoopRDD

__집계

____groupByKey

____reduceByKey

____aggregateByKey

____combineByKey

____groupByKey, reduceByKey, combineByKey, aggregateByKey의 비교

__파티셔닝과 셔플링

____파티셔너

____셔플링

__브로드캐스트 변수

____브로드캐스트 변수 생성

____브로드캐스트 변수 정리

____브로드캐스트 정리

__누산기

__요약

8장 스파크 SQL

__스파크 SQL과 데이터 프레임

__데이터 프레임 API와 SQL API

____피벗

____필터

____사용자 정의 함수(UDF)

____데이터의 스키마 구조

____데이터셋 로드와 저장

__집계

____집계 함수

____groupBy

____rollup

____cube

____윈도우 함수

__조인

____조인의 내부 동작

____브로드캐스트 조인

____조인 타입

____조인의 성능 결과

__요약

9장 스파크 스트리밍

__스트리밍에 대한 간략한 소개

____최소 한 번 처리 방식

____최대 한 번 처리 방식

____정확히 한 번 처리

__스파크 스트리밍

____StreamingContext

____입력 스트림

____binaryRecordsStream

____queueStream

____textFileStream 예

____twitterStream 예

__불연속 스트림

____트랜스포메이션

____윈도우 연산

__상태 저장/상태 비저장 트랜스포메이션

____상태 비저장 트랜스포메이션

____상태 저장 트랜스포메이션

__체크 포인팅

____메타데이터 체크 포인팅

____데이터 체크포인팅

____드라이버 실패 복구

__스트리밍 플랫폼과의 상호운용성(아파치 카프카)

____수신기 기반의 접근 방식

____다이렉트 스트림

____구조화 스트리밍

__구조화 스트리밍

____이벤트 시간과 지연 데이터 처리

____내결함성 의미 체계

__요약

10장 GraphX

__그래프 이론에 대한 간략한 소개

__GraphX

__VertexRDD와 EdgeRDD

____VertexRDD

____EdgeRDD

__그래프 연산자

____filter

____mapValues

____aggregateMessages

____triangleCount

__Pregel API

____연결된 컴포넌트

____여행하는 세일즈맨 문제

____ShortestPaths

__페이지랭크

__요약

11장 머신 러닝 학습: 스파크 MLlib와 ML

__머신 러닝 소개

____일반적인 머신 러닝 워크플로우

____머신 러닝 작업

__스파크 머신 러닝 API

____스파크 머신 러닝 라이브러리

__피처 추출과 트랜스포메이션

____CountVectorizer

____토큰화

____StopWordsRemover

____StringIndexer

____OneHotEncoder

____스파크 ML 파이프라인

__간단한 파이프라인 생성

__비지도 머신 러닝

____차원 축소

____PCA

__이진 및 다중 클래스 분류

____성능 메트릭

____로지스틱 회귀 분석을 이용한 다중 클래스 분류

____랜덤 포레스트를 사용해 분류 정확도 향상

__요약

12장 고급 머신 러닝 모범 사례

__머신 러닝 모범 사례

____오버피팅과 언더피팅에 주의

____스파크 MLlib과 ML에 집중

____애플리케이션에 적합한 알고리즘 선택

____알고리즘을 선택할 때 고려해야 할 사항

____알고리즘을 선택할 때 데이터를 검사

__ML 모델의 하이퍼파라미터 튜닝

____하이퍼파라미터 튜닝

____그리드 검색 파라미터 튜닝

____교차 검증

____신용 위험 분석: 하이퍼파라미터 튜닝 예

__스파크를 사용한 추천 시스템

____스파크를 이용한 모델 기반 추천

__주제 모델링: 텍스트 클러스터링에서 모범 사례

____LDA 동작 방법

____스파크 MLlib를 이용한 주제 모델링

__요약
[알라딘에서 제공한 정보입니다.]

QuickMenu